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Frontal waves in a strait
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The slow downstream (x) variation of a dense and inviscid bottom current (u) in
a parabolic strait with a sill at y = 0 is investigated. Vanishing potential vorticity is
assumed and the density interface in the 1 1/2-layer model intersects the bottom
at y = y1 and y = y2 <y1, where the vanishing layer thickness (h) provides the
free dynamical boundary condition. For time-dependent finite-amplitude waves, the
nonlinear hyperbolic equations obtained here give the wave velocity and indicate
the sense in which lateral wave steepening occurs. The long-wave perturbations of
y1(x, t), y2(x, t) are stationary if

y1

y2

= 1 − 2

1 +
√

6g′µ/f 2

where g′ is the reduced gravity, µ = ∂2M/∂y2 is the parabolic curvature of the
bottom elevation (M), and f is the Coriolis parameter. This controls the upstream–
downstream flow, and the downstream nonlinearity generates ‘short’ waves which
may initiate lateral mixing with the adjacent (less dense) water mass.

It is also shown that short waves are exponentially amplified with a maximum
growth rate (about 1/day) depending only on g′µ/f 2. When g′µ/f 2 = 1 (a narrow
strait) the instability is suppressed, but for small g′µ/f 2 � 1 the growth rate is
comparable to the flat bottom case µ = 0, studied by Griffiths, Killworth & Stern
(J. Fluid Mech. Vol. 117, 1982, p. 343.).

1. Introduction
The Denmark Straits and the Faroe Island Straits are examples of relatively

narrow and shallow passageways through which the coldest waters in the North
Atlantic flow southward, thereby maintaining the deep water temperature (Borenäs
& Lundberg 1988; Käse & Oschilies 2000; Girton & Sanford 2002; Käse, Girton &
Sanford 2003). The mean flow upstream of the sill is notably different from further
downstream. This suggests either a ‘branch point’ effect at the sill which controls
the discharge (Whitehead, Leetmaa & Knox 1974; Whitehead 1998), or a resonant
amplification of long quasi-stationary waves. Shorter scales generated by nonlinear
frontal steepening (Stern 1980) can be subsequently amplified by the ageostrophic
instability of Griffiths, Killworth & Stern (1982, henceforth referred to as GKS) and
this may explain the formation of ‘round’ eddies in the downstream flow (see Pratt
& Helfrich 2007). Recent observations (Geyer et al. 2006), numerical modelling (Ezer
2006) and laboratory experiments (Cenedese et al. 2004) indicate that the downstream
flow near the sill may also be dominated by regular wave oscillations.

A great simplification in the dynamical problem occurs if the bottom water has van-
ishing potential vorticity (Whitehead et al. 1974; Stern 1980) and is slowly varying in



322 M. E. Stern and J. A. Simeonov

h

y1 y2 < 0

f

g′
u

u
x

y = 0

Figure 1. (a) Vertical section of a parabolic channel containing a slowly varying geostrophic
flow (u) with a density interface, above which the liquid is light and resting. The free boundaries
y1, y2 may vary slowly in the downstream direction. The sill is at y = 0.

the downstream (x) direction. Furthermore, laboratory experiments (Whitehead et al.
1974) employ straits with a rectangular cross-section, so that the relatively simple
boundary condition of vanishing normal velocity applies. The main goal of that work
(Whitehead et al. 1974) was to predict the volume discharge (Q) as a function of the
upstream layer thickness using Bernoulli invariance.

Gill (1977) extended this theory by assuming a finite constant potential vorticity.
This, in turn, was generalized by Borenäs & Lundberg (1986) who considered a
parabolic channel with elevation M = µy2, in which case the interface bounding
the density current intersects the bottom at y = y1 and y = y2 (figure 1), where
h(y1) = h(y2) = 0 provides the free boundary conditions. This h-structure is obviously
a much more realistic representation of the isotherms at the bottom of oceanic straits
(Girton, Sanford & Käse 2001). Unfortunately, however, the algebra in the Borenäs
& Lundberg (1986) theory for finite potential vorticity is intractable, and therefore
we want to return to the problem of flow with vanishing potential vorticity. This
is done by Borenäs & Lundberg (1988) who maximize the transport to obtain the
hydraulically ‘controlled’ flow. One criticism of the theory is that it is restricted to
unidirectional flow.

Like the previous theories we assume a deep and passive upper layer (cf. Karsten,
Swaters & Thomson 1995) and neglect bottom friction. The steady model of
Borenäs & Lundberg (1988) is generalized by including time-dependent effects and
downstream variation of topography. In addition to the question of what controls
the volume transport

Q =

∫ y2

y1

uh dy,

the time-dependent problem is also of interest since the ‘lateral breaking’ of long
free waves can lead to stronger cross-stream velocity v which entrains the relatively
light surrounding water, thereby initiating the increased downstream transport of
the overflow. These time-dependent nonlinear long-wave equations for y1 and y2 are
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obtained in § 2. In § 3, we use the method of characteristics to obtain finite-amplitude
solutions of the long-wave equations. The short-wave instability linear theory of
GKS for a flow on a uniform slope is extended in § 4 for a channel with parabolic
cross-section. The results are discussed in § 5.

2. Long-wave equations in a parabolic channel
Figure 1 is a vertical section of a bottom density current (cf. Borenäs & Lundberg

1988) u in a channel whose parabolic elevation is M(x, y) =µy2 +m(x), where µ is
the constant cross-steam (y) curvature and m(x) is the minimum M at downstream
distance x; the sill is at m(x) = 0. For slow downstream variations (figure 1) in a flow(u)
with vanishing potential vorticity, the long-wave approximation (∂/∂x � ∂/∂y) yields
∂u/∂y ∼= f , where u ∼= −g′/f ∂(h + M)/∂y is the geostrophic down-channel (x) velocity,
g′ is the reduced gravity of the lower layer, h is its local depth, f is the Coriolis
parameter, and the cross-stream velocity is v � u. A straightforward integration yields

u = fy + a(x, t), (1)

−∂h

∂y
= f 2y/g′ + f a/g′ + 2µy, (2)

where a is the constant in the integration of the vorticity equation. By using the free
boundary conditions h(y1) =h(y2) = 0 in the integration of (2) in y2 � y � y1 we
obtain

a = −f (y1 + y2)
(

1
2

+ G
)
, (3)

where

G ≡ g′µ

f 2
. (4)

Figure 1 indicates that y2 < 0, and therefore a > 0. Integrating (2) to finite y yields

−h = 1
2
(f 2/g′ + 2µ)

(
y2 − y2

1

)
+ (f a/g′)(y − y1). (5a)

Note that 2u(y2) = − f (y1 − y2) − (y1 + y2)2Gf � 0 only if

−(y1 + y2)

y1 − y2

� 2G. (5b)

To illustrate: if u(y2) = 0 and −y1/y2 = 1/2 then 2G = 1/3. Equation (5b) restricts
the applicability of zero potential vorticity profiles to one-way flow in a channel
(Borenäs & Lundberg 1986). In the present theory no restriction is placed on the
signs of u(y2, t).

Another important simplification of the long-wave model with vanishing potential
vorticity lies in the x-momentum equation:

∂u

∂t
+

∂

∂x

(
u2

2
+ g′h

)
+ g′ ∂m

∂x
= 0. (6)

Using again (1) and (5a) we have

u2

2
+ g′h =

a2

2
+

f 2y2

2
− f 2y2

(
G + 1

2

)
+ f 2y2

1

(
G + 1

2

)
+ f ay1, (7)
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in which the x- and y-dependent terms are separated. Since the x-derivative of the
y-dependent terms vanishes, (6) becomes

∂a

∂t
+

∂

∂x

[
a2

2
+ f ay1 + f 2y2

1

(
G + 1

2

)]
= −g′ ∂m

∂x
. (8)

Defining

D ≡ y1 + y2 < 0, W ≡ y1 − y2 > 0, (9)

where W (x, t) is the distance between the two interfaces and D < 0 depends on the
relative position of the sill, and eliminating a = −f D(1/2 + G) from (3), (8) becomes

− 1

f

∂D

∂t
+

∂

∂x

(
W 2

4
+

GD2

2

)
= − g′ ∂m

∂x

1

f 2(G + 1/2)
. (10)

To obtain another equation for (y1, y2) we turn to the continuity equation

∂

∂t

∫ y1

y2

h dy +
∂Q

∂x
= 0. (11)

Eliminating u = fy + a from (1) in the mean downstream transport Q ≡
∫ y1

y2
uh dy

and integrating by parts (using h = 0 at y = y1,2) gives

Q = −
∫ y1

y2

(
fy2

2
+ ay

)
∂h

∂y
dy.

Using (2), the integration yields

Q = −µ

6

(
G + 1

2

)
(y1 − y2)

3(y2 + y1)f. (12)

To obtain the first term in (11) we first note that (5a) is equivalent to

−h =
f 2

g′

(
1
2

+ G
)
[(y − y1)

2 + (y1 − y2)(y − y1)].

Changing the integration variable to (y − y1) we have∫ y1

y2

h dy = −f 2

g′

(
G + 1

2

)[ (y − y1)
3

3

∣∣∣∣
y1

y2

+ (y1 − y2)
(y − y1)

2

2

∣∣∣∣
y1

y2

]
, (13)

or ∫ y1

y2

h dy =
f 2

g′

(
G + 1

2

)W 3

6
. (14)

Then (11) becomes

1

f

∂

∂t

W 3

6
− G

6

∂

∂x
(DW 3) = 0. (15)

For G > 0 (10) and (15) are hyperbolic long-wave equations (for a given downstream
variation of min M =m).

It is of interest to compare the transport Q (equation (12)) with a purely geostrophic
value appropriate for vertical boundaries:

Q0 ≡ g′(M2(y2) − M2(y1))

2f
=

g′M2(y2)

2f
(1 − ε4),

(16a)
ε ≡ y1/y2.
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This is closely related to the Whitehead et al. (1974) value. On the other hand, for
the parabolic wall (12) gives

Q =
f

6
µy4

2 (1 − ε)3(1 + ε)(G + 1/2) = Q0

[
G + 1/2

3G

]
(1 − ε)2

(1 + ε2)
. (16b)

This shows the influence of G =µg′/f 2 on the transport, and it only remains to
predict ε or W/D.

3. Large-amplitude long waves
3.1. Special solutions

The general solutions of the initial value problem for the 2 × 2 system (equations
(10) and (15)) can be obtained from the two Riemann invariants once the two sets
of characteristics are determined. Here, however, we are interested in the special case
when one of the Riemann invariants is uniform and therefore the problem can be
solved using only the set of characteristic lines corresponding to the second Riemann
invariant. The condition that one of the Riemann invariants is uniform is equivalent
to assuming that

D = D(W ).

Using

∂D

∂t
= DW

∂W

∂t
,

∂D

∂x
= DW

∂W

∂x
, DW =

dD

dW
and assuming m = 0, (10) and (15) become

1

f
DW

∂W

∂t
=

W

2

∂W

∂x
+ GDDW

∂W

∂x
, (171a)

1

f

W 2

2

∂W

∂t
=

G

6
W 3DW

∂W

∂x
+

GD

2
W 2 ∂W

∂x
. (172b)

The solvability condition obtained by dividing these equations yields

DW = ±
(

3

2G

)1/2

. (18)

The corresponding nonlinear phase speeds obtained from (17a) are

C∓ ≡ − ∂W/∂t

∂W/∂x
= fG

(
−D ∓ W√

6G

)
. (19)

Note that the phase speeds of the linearized hyperbolic equations (10), (15) are given
by the same formula (19) except that D and W are replaced by their undisturbed
values. The solutions with the ‘+’ and ‘−’ signs in (19) will be referred to as
the fast wave and slow wave, respectively, since C+ >C−. While the fast wave
always propagates downstream (C+ > 0), the slow wave may be stationary (C− = 0)
or propagate upstream if

W � −D
√

6G. (20)

The condition that the local propagation velocity vanishes corresponds to a critical
section which determines the ‘controlled’ flow. Using

W

D
≡ y1 − y2

y1 + y2

= −1 − ε

1 + ε
,
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the equal sign in (20) suggests

ε = 1 − 2

1 +
√

6G
. (21)

For given G, this ε determines the transport (16b) which corresponds to a controlled
flow. This should be compared with Borenäs & Lundberg (1988) who obtained the
critical condition W = −D

√
6G by maximizing Q with respect to W . When W is

smaller than the critical value −D
√

6G both waves (19) propagate downstream and
this corresponds to a supercritical flow.

3.2. Initial value solutions

Here we will use the special solutions (18), (19) to investigate the nonlinear evolution
of finite-amplitude perturbations which may lead to wave steepening. We assume an
initial long-wave perturbation, corresponding to a localized (near x = 0) increase of
the width of the flow:

W0(x)

W∞
= 1 +

A/W∞

1 + (x/L∗)2
, (22)

where W∞ is the upstream x = −∞ (‘undisturbed’) width, L∗ 
 W0 is the downstream
length of the perturbation and A> 0 is the perturbation amplitude. Equation (18)
gives the initial D0(x) for the fast and the slow special solutions corresponding to (22):

D0(x) − D∞ = ±
√

3

2G
[W0(x) − W∞]. (23)

To obtain the solutions at subsequent times we first note that since D and W are
conserved along the characteristic curves:

dx

dt
≡ C∓, (24)

the phase speeds C∓ in (19) are also conserved along x(t). The characteristic curves
then are just straight lines

x = x0 + C∓t, (25)

where x0 is the initial coordinate of a given width W0. The solution then is

W (x, t) = W0(x0) = W0(x − C∓t), (26a)

D(x, t) = D0(x0) = D0(x − C∓t). (26b)

The corresponding displacements (normalized by W∞) of the two fronts

y1(x, t)

W∞
=

D0(x0) + W0(x0)

2W∞
,

y2(x, t)

W∞
=

D0(x0) − W0(x0)

2W∞

are completely determined from (22), (23) and (26a, b) for given G, upstream condition
D∞/W∞ and amplitude A/W∞. These are shown in figure 2 for G = 0.5, a subcritical
upstream −D∞/W∞ = 1/3 < (6G)−1/2 = 3−1/2 and initial amplitude A/W∞ = 1/6. The
downstream-propagating fast solution (figure 2a) is characterized by a stronger
displacement of the right-hand front y2 while the displacement of the left-hand front
y1 is larger in the slow wave (figure 2b). For the present subcritical D∞/W∞, both
solutions steepen at the leading edge of the wave. For supercritical conditions (larger
|D∞|), however, the slow wave propagates downstream and the steepening occurs in
the trailing edge. The present results indicate a forward steepening of the right-hand
front and backward steepening of the left-hand front for supercritical flows. Similar
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Figure 2. The evolution of a localized width bulge in the fast (a) and the slow
(b) special solutions illustrated by the displacements of the two fronts y1, y2 at three different
non-dimensional times ftW∞/L∗ = 0 (dots), ftW∞/L∗ = 4 (dash-dot) and ftW∞/L∗ = 8 (solid).
The bottom curvature corresponds to G = 0.5, the upstream flow is subcritical −D∞/W∞ = 1/3,
and the perturbation amplitude is A/W∞ = 1/6. The cross-stream (y) and the downstream
(x) coordinates are non-dimensionalized by W∞ and L∗.

wave-steepening is observed downstream of the sill in the numerical simulations of
Pratt, Helfrich & Chassignet (2000) and Ezer (2006, his figure 6d).

The wave steepening can be easily explained by considering the downstream
variation of the phase speed which according to (19) is

dC∓

dx
= fG

(
−dD

dx
∓ 1√

6G

dW

dx

)
.

Using (18) to eliminate dD/dx we obtain

dC∓

dx
= ∓f

√
8G

3

dW

dx
.

This shows that the phase speed has an extremum at the section of maximum
width; since d2W/dx2 < 0 at this section, the extremum is a maximum for C+ and a
minimum for C−. Accordingly, for the fast solution, the section of maximum width
overtakes any downstream section and the wave steepens forward. For the slow
solution and supercritical conditions, the section of maximum width (having the
smallest downstream C−) is overtaken by faster moving upstream sections and the
wave steepens backwards.

We also note that the displacement of the left front (figure 2b, see also (23))
in the slow wave results in a decrease of the local |D(x)|. If the amplitude A is
sufficiently large so that |D(x)| =0 at some x, the upstream flow is ‘blocked’ as
the total downstream transport Q (12) would vanish at this section. Note that for a
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general initial disturbance, the maximum amplitude is not conserved but may increase
in time (cf. Stern 1980), giving rising to the blocking effect.

4. Short-wave instability
The results in the previous section indicate that short-wave disturbances will be

rapidly generated due to the steepening of long-wave perturbations. Here we will
investigate the effect of short waves by extending the linear stability theory of GKS,
for a bottom gravity current ū in a parabolic channel. The mean flow in (1), (5a)
is assumed independent of the downstream (x) direction and the left-hand and the
right-hand (viewing downstream) free edges where the layer thickness vanishes are
denoted by ȳ1 and ȳ2, respectively. Our focus is on the fastest growing instability; a
more detailed study of this stability problem which includes non-GKS instability can
be found in Pratt & Helfrich (2007).

The basic state is next perturbed by infinitesimal waves with velocities u′(x, y, t),
v′(x, y, t), and depth h′, whose downstream wavelength is comparable to the mean
width ȳ1 − ȳ2. Accordingly, we reinstate the x-derivative in the conservation of
potential vorticity (assumed to be initially zero):

∂u′/∂y − ∂v′/∂x = 0; (27a)

this implies that the considered wave perturbations are irrotational. The problem is
closed with the linearized continuity

∂h′

∂t
+ ū

∂h′

∂x
+ h̄

∂u′

∂x
+

∂v′h̄

∂y
= 0 (27b)

and x-momentum equations

∂u′

∂t
+ ū

∂u′

∂x
= −g′ ∂h′

∂x
. (27c)

Note the cancellation of v′∂ū/∂y − f v′ = 0 in (27c).
Introducing the function Ψ , such that

u′ ≡ ∂ Ψ/∂x, v′ ≡ ∂ Ψ/∂y, (27d)

and assuming normal modes [u′, v′, Ψ ′, h′] = Re([û(y), v̂, Ψ̂ , ĥ]eik(x−ct)) equations (27)
yield the following ODE for Ψ̂ :

d

dy

(
h̄

dΨ̂

dy

)
− k2

[
h̄ − (ū − c)2

g′

]
Ψ̂ = 0. (28)

Evaluating (28) at y = ȳ1,2 where h̄ =0 gives the two boundary conditions

dh̄

dy

dΨ̂

dy
+ k2

[
(ū − c)2

g′

]
Ψ̂ = 0, at y = ȳ1,2 (29a)

relating dΨ̂ /dy and Ψ̂ at the free edges. These boundary conditions can be formally
derived using two conditions: (i) that the frontal boundaries are material and (ii) that
the gradient of (h̄ + h′) at the boundaries has vanishing component in the tangential
direction. One of the boundary conditions (29a) can be replaced by an integral
condition (cf. GKS) obtained by integrating (28) in ȳ2 � y � ȳ1:∫ ȳ1

ȳ2

[
h̄ − (ū − c)2

g′

]
Ψ̂ dy = 0. (29b)
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For comparison with the long-wave theory of § 3, we expand (following GKS) both Ψ̂

and c in power series of an infinitesimal k. Equation (28) then suggests that the zeroth-
order term Ψ̂0 is constant and the integral (29b) then gives a quadratic equation for c0.
The phase speeds predicted by this quadratic for k → 0 are the same as those in
equation (19).

4.1. Dependence on ȳ1, ȳ2 and G.

We will now transform the eigenvalue problem (28), (29) to show that the growth rate
∼Im(c) does not depend on the location of the centroid D̄/2 ≡ (ȳ1 + ȳ2)/2 relative to
the sill. Using the identities

ȳ1 =
W̄

2
+

D̄

2
, ȳ2 = −W̄

2
+

D̄

2
, (30)

where W̄/2 ≡ (ȳ1 − ȳ2)/2, the mean velocity ū (1) and thickness h̄ (5) become

ū = fy − f
(

1
2

+ G
)
D̄ = f (y − D̄/2) − fGD̄, (31a)

h̄ = −f 2

g′

(
G + 1

2

)
[(y − D̄/2)2 − W̄ 2/4]. (31b)

Transforming the cross-stream coordinate y − D̄/2 → y so that the new origin (y = 0)
is at the centroid and substituting (31a, b) in (28) gives

d

dy

((
W̄ 2

4
− y2

)
dΨ̂

dy

)
− k2

[(
W̄ 2

4
− y2

)
− (fy − fGD̄ − c)2

f 2
(
G + 1

2

) ]
Ψ̂ = 0. (32)

Similarly, the integral condition (29b) becomes∫ W̄/2

−W̄/2

[(
W̄ 2

4
− y2

)
− (fy − fGD̄ − c)2

f 2
(
G + 1

2

) ]
Ψ̂ dy = 0. (33)

In (32) and (33), the parameter D̄ ≡ (ȳ1 + ȳ2) now enters only as an additive constant
to the eigenvalue c. Thus, the transformed eigenvalue c̃:

c̃ ≡ c + fGD̄, (34)

is independent of the centroid location D̄/2. Because Im(c) = Im(c̃), the growth rate of
the original problem is also independent of D̄/2 and the latter only affects (linearly)
the phase speed Re(c) of the eigenmode.

To illustrate the dependence on the half-width W ≡ (ȳ1 − ȳ2) we note that under
the scaling

(k−1, y) =
(
k−1

0 , y0

)
W̄/2, c̃ = c̃0f

W̄

2

(
G + 1

2

)1/2
, (35)

equations (32) and (33) become independent of W̄ :

d

dy0

((
1 − y2

0

)dΨ̂

dy0

)
− k2

0

[(
1 − y2

0

)
−

(
y0√

G + 1
2

− c̃0

)2]
Ψ̂ = 0, (36)

∫ 1

−1

[(
1 − y2

0

)
−

(
y0√

G + 1
2

− c̃0

)2]
Ψ̂ dy0 = 0. (37)

Thus, the wavelength and the phase speed of the perturbations are proportional
to the width of the current W . The growth rate Im(kc) = (G + 1/2)1/2 f Im(k0c̃0),
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however, is independent of W , and according to (36) and (37) depends on a single
non-dimensional parameter G. We note that the factor (G + 1/2)1/2 used to scale c̃

comes from the speed of long gravity waves based on the maximum current thickness

f 2W
2
(G + 1/2)/4g′ (see (31b)).

Next, we discuss the dependence of the growth rate on G. For G = 0, the eigenvalue
problem (36) and (37) is equivalent to the one in GKS and therefore we are assured
of the existence of growing solutions with finite growth rate for G =0. The growth
rate, however, might be greatly reduced when G is large as the boundary conditions
become more like those in a channel with vertical walls. This can be illustrated
by considering the asymptotic limit G → ∞ and retaining terms to O(G−1/2) in the
ODE (36). The resulting ODE is then multiplied by the complex conjugate Ψ̂ ∗ and
integrated in −1 � y � 1 to obtain two conditions for the real and the imaginary part.
It can be shown that these two conditions can be satisfied only when Im(c̃) = 0 (to
O(G−1/2)). The question whether the growth rate vanishes identically if G exceeds a
certain critical value is addressed by the numerical solutions in the next section.

4.2. Numerical solutions

In this section, we solve (36) and (37) numerically by assuming solutions in the form
of a truncated power series expansion about the left-hand boundary y0 = 1

Ψ̂ (y0) = B

N∑
n=0

an

(1 − y0)
n

2n
, (38)

where B is a unspecified dimensional scale. Substitution of (38) in (36) yields a
recursive formula relating an+1 to an, an−1 and an−2:

an+1 =
n(n + 1) − σ 2

(n + 1)2
an +

4
(
k2

0 − bk0σ
)

(n + 1)2
an−1 − 4k2

0(1 + b2)

(n + 1)2
an−2, (39)

where b ≡ (G + 1/2)−1/2, σ ≡ k0(c̃0 − b) and a−1 = a−2 = 0. It is straightforward to show
that the boundary condition (29a) at y = ȳ1 – a relationship between a1 and a0 –
is automatically satisfied when a1 is related to a0 by the recursive formula. The
boundary condition (29a) at the other boundary y = ȳ2 and the integral condition
(29b), however, are automatically satisfied only for an infinite N = ∞ power series.
Thus, for finite N , substitution of (38) into (37) yields a relationship for the two
highest coefficients aN and aN−1:

aN

[
b

k0(1 + b2)
σ +

N + 2

N + 3
− 1

1 + b2

]
+ aN−1 = 0; (40)

the boundary condition at y = ȳ2 results in similar formula except that the term
(N + 2)/(N + 3) is replaced by one.

Using a−1 = a−2 = 0, and assuming (without loss of generality) that a0 = 1, equation
(39) can be used to determine the higher coefficients an as polynomials in σ of degree
2n (for example, a1 = −σ 2):

an = P2n(σ ). (41)

The polynomials (41) for the two highest coefficients aN and aN−1 then are substituted
in (40) and this yields the characteristic polynomial for σ as function of k0, G(b) and
the truncation number N . All the roots of the characteristic polynomial are obtained
using Matlab. Although this procedure usually yields many complex roots for given
k0 and G, we found only one pair of complex roots corresponding to a convergent
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Figure 3. (a) The velocity field (grey arrows) and the thickness perturbation (contours) for the
fastest growing normal mode for G =0.5. Solid (dashed) contours denote positive (negative)
perturbation thickness; these have their largest amplitude near y − D/2 = ±W/2. (b) The
average cross-stream mass flux v′h′ corresponding to (a).

power series solution. The unphysical roots are filtered out by requiring |aN | � a0 = 1.
Convergence of the eigenvalues to the fourth significant digit is typically obtained for
N = 30.

Once the eigenvalue σ is known, the coefficients in the power series solution (38)
are obtained from (41). The corresponding velocity and thickness perturbations then
are computed using (27d) and (27c). These are plotted in figure 3a for G =0.5 and the
corresponding fastest growing k0 = 2.34 (below). The amplitude of the eigenfunction is
maximum near the free boundaries, which is typical for GKS-type instability. It is also
worth noting that the eigenfunction remains symmetric across the downstream axis
despite the asymmetry introduced by the parabolic geometry (variable bottom slope).
Because of this symmetry, the corresponding cross-stream mass flux v′h′ (figure 3b)
is antisymmetric and outwards from the centre. This flux would result in the lateral
spreading of the plume as demonstrated in the laboratory experiments of GKS.

The largest growth rate at given G is obtained by repeating the root-finding
calculation for different k0 and searching the results. As a test of the procedure
we started with G =0 for which the known (GKS) fastest growing wavenumber
is k0 = 0.8

√
2. The search is then repeated in the vicinity of this wavenumber by

increasing the value of G. The dependence of the maximum dimensional growth rate
Im(kc) on G and the corresponding wavelength 2π/k are shown in figures 4(a) and
4(b), respectively. As expected, the growth rate decreases rapidly with increasing G

(or µ). The slope of the curve in figure 4(a), however, decreases with increasing G

and indicates that the growth rate does not vanish at finite G. Figure 4(b) shows that
the fastest growing wavelength 2π/k decreases with G; for comparison, we note that
the deformation radius based on the maximum thickness f 2W̄ 2(G + 1/2)/4g′ (31b)
increases as (G + 1/2)1/2.

Figure 4(a) offers a strong proof that the instability of zero potential vorticity
flow in a parabolic channel generalizes that of the corresponding flow on a flat
bottom. In the latter case, Paldor (1983) showed that the instability is produced by
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Figure 4. The growth rate (a), the wavelength (b) and the period 2πW̄/(k0|D̄|fG) (c) of the
fastest growing short wave as a function of G. The period in (c) is obtained by assuming

f = 10−4 s−1, a critical flow (circles) with W̄ = |D̄|
√

6G and a subcritical flow (squares) with

W̄ = 2|D̄|
√

6G; the growth rate (a) and the wavelength (b) do not depend on D̄.

the cooperation of the two free interfaces. With more general potential vorticity, we
expect other types of shear flow modes to be generated.

Our numerical results also show that the fastest growing mode has Re(c̃0) ≈ 0. From
(34) and (35) we then obtain a simple expression for the phase speed of the fastest
growing wave:

Re(c) ≈ −fG(ȳ1 + ȳ2), (42)

indicating that the latter travel with the mean current speed ū at y =(ȳ1 + ȳ2)/2. Note
that the speed (42) is the average (C+ + C−)/2 of the speeds of the fast and the slow
special waves (19) of § 3. The period of the oscillations corresponding to (42) is equal
to the non-dimensional wavelength (figure 4b) multiplied by W̄/|Re(c)| = W̄/(|D̄|fG).

Assuming a critical flow with W̄/D̄ = −
√

6G (20) the dependence of this period on
G is shown in figure 4(c).

5. Conclusion
A parabolic channel is a much better representation of a narrow strait than is a

rectangular section with a flat bottom; in the latter case the density interface intersects
vertical walls at the points where vanishing normal velocity is the appropriate
boundary condition. In the former case the appropriate free boundary condition
yields a PDE (10), describing the slow downstream variation (long waves) of the free
endpoints y1, y2. The second PDE (15) for these long frontal waves comes from the
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conservation of mass. The main assumption of vanishing potential vorticity is used
in simplifying the downstream momentum equation.

The channel curvature parameter G = g′µ/f 2 is a fundamental non-dimensional
number, and if µ < 0 the evolutionary equation is elliptic implying that long waves on
a shelf (µ < 0) are unstable, which is also the case for µ = 0 (GKS). But for the case of
present interest (µ > 0) the long-wave PDE is hyperbolic. ‘Special’ (Riemann waves)
nonlinear solutions (§ 3) give the condition for one of the two waves to be stationary
(20); the other wave propagates rapidly downstream. Unlike previous steady theories
of controlled flow, we make no statement about the upstream boundary condition
and only assume a stationary wave. The condition for a stationary wave relates
the position of the interface (y1, y2) to the channel curvature G. This provides a
criterion for control which, compared to Froude number criteria, is readily applied
to observation.

Observations (Borenäs & Lundberg 1988) in the Faroe Straits yield G = 1.5 at the
sill, and from their figure 5(a), we estimate y1 = +4 km, y2 = −10 km, or y1/y2 = −4/10.
Our theory (§ 3) on the other hand gives W/(−D) =

√
6G, or y1/y2 = −1/2, in very

close agreement. Thus, we conclude that there are stationary waves near the Faroe
sill, and this determines the transport as approximated by Borenäs & Lundberg.

The ‘special’ nonlinear solutions also indicate where long-wave steepening and
amplifying transverse velocities (v) should occur. A reviewer raised the question
of whether the long-wave steepening occurs on slower time scale compared to the
e-folding time of unstable short waves. We have therefore generalized the GKS linear
theory for a parabolic bottom and found that the growth rate depends only on the
non-dimensional bottom curvature G and decreases as G increases (figure 4a). This
growth rate can now be compared with the steepening rate of the special long waves
of § 3.2. If we characterize the local steepness by the downstream derivative of the
width Wx , we note that along the characteristics (25), the rate of change of a long
wave Wx is given by

1

Wx

dWx

dt
= −dC

dx
= ±f

√
8G

3
Wx. (43)

In contrast to this, the corresponding growth rate W−1
x dWx/dt for the short-wave

instability is constant in time. In a narrow channel with G = 1, figure 4(a) suggests
a short-wave growth rate of about 0.005f . For a long-wave perturbation with initial
(maximum) Wx = 0.01 equation (43) implies a 3 times larger initial growth rate
(0.016f ) of Wx; thus the long-wave dynamics will dominate. Further downstream
where G is much smaller, the shorter waves will grow faster (figure 4a) and will
strongly affect a long-wave perturbation.

Ezer (2006) studied the influence of the sill geometry on the variability of
the downstream flow using a high-resolution terrain-following ocean model. For
parameters representative of the Faroe Bank Channel overflow, he found two regimes
characterizing the flow downstream of the sill: regular wave perturbations with a
period of 4–6 days near the sill and irregular eddies further downstream.

Our results suggest the following interpretation of Ezer’s numerical simulations.
In the narrow channel near the sill, the short-wave instability is weak (due to large
G) and the dynamics is controlled by one nearly stationary and one downstream-
propagating long wave. Short waves are nevertheless rapidly generated due to the
nonlinear tendency of long waves to steepen. These short waves are subsequently
amplified by the ageostrophic instability which becomes stronger (figure 4a) further
downstream where G is smaller. For G= 0.05 and critical W̄/|D̄| ≈ 0.5, approximately
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corresponding to a section in the wave regime of Ezer’s calculations, figure 4(c)
suggests a wave period of 3.2 days, in good agreement with observations (Geyer et al.
2006) and somewhat shorter than the period of 6.5 days obtained in Ezer’s simu-
lations.

For sufficiently large amplitudes lateral wave breaking may lead to entrainment of
the more dense water into either side of the overflow. The lateral mixing in the outflow
will be additionally affected by the formation of eddies due to the ageostrophic short-
wave instability (Pratt & Helfrich 2007). These effects may be investigated numerically
utilizing the complete (hydrostatic) equations and by initializing these with the ‘special’
long wave of the present theory. For a related numerical problem pertaining to coastal
jets see Stern & Helfrich (2002), and Stern & Chassignet (2000).

We gratefully acknowledge the support of the National Science Foundation (Grant
OCE-0236304).
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